

WAVE PROPAGATION IN INHOMOGENEOUS ANISOTROPIC RECTANGULAR WAVEGUIDES
BY THE EFFECTIVE INDEX METHOD

M.N.Armenise - M. De Sario

Istituto Elettrotecnico - University

Via Re David, n. 200

70125 BARI (Italy)

ABSTRACT

Hybrid mode dispersion and mapping of multilayer rectangular diffused birifrangent waveguides are studied by the effective index method for two orientations, horizontal and vertical, of the crystal optic axis. At first the structure is examined in the approximate lossless approach, then the perturbation technique allows us to evaluate the extinction coefficient value to employ as starting point in the direct search optimization strategy for determining the complex propagation constant for the exact solution. The guided E_{11}^x and E_{11}^y modes exhibit almost the same cutoff wavelength and their dispersion curves little differ from the ones of corresponding TM_0 , up to $1 \mu m$ for vertical optic axis because of the surface plasma waves, and TE_0 modes of the slab waveguide without and with the metal film respectively.

Introduction

Anisotropic indiffused waveguides are very interesting in the realization of multilayer structures for the fabrication of integrated optics devices and systems. A multilayer guide, including a thin film overlay and an embedded metal film, presents the advantage of a fine tuning of the propagation constant, by varying the overlay thickness or the refractive index¹ and a reduction of the ohmic losses². Therefore, by these guiding structures, it is possible to realize complex and multifunctional devices.

Several authors^{3,4,5} investigated the mode properties of slab multilayered dielectric waveguides but, till now, the optical anisotropic rectangular guides have not been examined in the proper way.

In this paper we determine the dispersion relations and the field distribution of anisotropic optical guides (see Fig. 1) whose rectangular cross section consists of a Ti diffused $LiNbO_3$ ferroelectric substrate overlayed by an appropriate oxide buffer having a re-

fractive index n_{ov} and a thickness b with two embedded Ag electrodes modeled by an ϵ_m complex dielectric constant and thickness h . The structure is investigated in the approximate lossless formulation and, then, the exact lossy solution is obtained by a direct search optimization strategy where the extinction coefficient k starting values are estimated by the perturbation technique.

Moreover in order to assess the influence of the optic axis orientation on the electromagnetic field and, therefore, the best configuration for the design of integrated optics devices, we investigate the waveguide both for c horizontal (\parallel) and vertical (\perp) under the hypothesis of a diagonal permittivity tensor.

This waveguiding system supports^{6,7} the E_{pq}^x and E_{pq}^y hybrid modes that are TE or TM in respect to one transverse coordinate. More precisely, for uniaxial materials with optic axis horizontal or vertical, the guided waves are derivable from a c-directed hertzian potential. Since the rigorous solution of the two-dimensional wave equation is considerably complicated even for a not diffused and isotropic guide, the geometry analysis is carried-out by the effective index method⁹ that is easy to use and gives a noticeable precision together with a short C.P.U. computer time after determining the slab guide characteristics by the transformation matrix method^{5,10,11}.

Among the other results, it is worth while to notice that, for a silver film $0.02 \mu m$ thick, the guide configuration (\parallel) does not support surface plasma waves that are excited in the configuration (\perp) at the wavelengths less than $1 \mu m$.

Mode analysis by the effective index method

The multi-dielectric structure is depicted in Fig.1. The lithium niobate perovskite crystal is Ti-diffused according to the complementary error function in the x direction with maximum index changes Δn_e and Δn_o of ex-

FIGURE 1: CHANNEL MULTILAYER WAVEGUIDE FOR ELECTROOPTICAL MODULATOR REALIZATION.

extraordinary $n_e(x)$ and ordinary $n_o(x)$ indices in respect to the bulk substrate n_{es} , n_{os} ones: $n_{e,o}(x)=n_{es,os} + \Delta n_{e,o} \operatorname{erfc}|x/d|$, (d =diffusion depth).

For uniaxial crystals if the optic axis is horizontal, the E_{pq}^x and E_{pq}^y modes supported by the optical guide are respectively transverse electric or magnetic to y coordinate while for vertical c -axis the z traveling hybrid modes are TE_x or TM_x .

In fact, in the last case, the E_{pq}^x mode are obtained by putting $H_x=0$ and solving the Maxwell's equations in respect to the H_y component that, in the diffused core, must satisfy the equation:

$$\frac{n_e^2}{n_o^2} \frac{\partial^2 H_y}{\partial x^2} + \frac{\partial^2 H_y}{\partial y^2} + n_e^2 \frac{\partial}{\partial x} \left(\frac{1}{n_e^2} \right) \frac{\partial H_y}{\partial x} + k_o^2 (n_e^2 - \bar{n}_{eq}^2) H_y = 0 \quad (1)$$

where it was supposed a time harmonic variation and a normal mode one $\exp(-jk_{oneq}z)$ along the propagation direction; $\bar{n}_{eq} = n - jk$ is the complex equivalent index and $k_o = 2\pi/\lambda_o$ is the free space wavenumber.

Let $H_y(x,y) = \varphi(x) \psi(y)$ be separable the equation (1) becomes

$$\frac{1}{\varphi} \frac{n_e^2 d^2 \varphi}{n_o^2 dx^2} + n_e^2 \frac{d}{dx} \left(\frac{1}{n_e^2} \right) \frac{1}{\varphi} \frac{d \varphi}{dx} + k_o^2 (n_e^2 - \bar{n}_{eq}^2) = -\frac{1}{\psi} \frac{d^2 \psi}{dy^2} \quad (2)$$

The left side with $\partial/\partial y=0$, by imposing the boundary conditions at the interfaces $x=b$; $x=h$; $x=0$ and $x=-t$, gives rise to the TM_z modes whose equivalent indices $\bar{n}_{eq,s}$ depend on both n_o and n_e but chiefly on n_e because the real part n_s of $\bar{n}_{eq,s}$ ranges between n_{es} and $(n_{es} + \Delta n_e)$. Afterwards the result

$$\frac{1}{\varphi} \frac{n_e^2 d^2 \varphi}{n_o^2 dx^2} + n_e^2 \frac{d}{dx} \left(\frac{1}{n_e^2} \right) \frac{1}{\varphi} \frac{d \varphi}{dx} = -k_o^2 (n_e^2 - \bar{n}_{eq}^2) \quad (3)$$

is back substituted into (2) to get

$$\frac{d^2 \psi}{dy^2} + k_o^2 (\bar{n}_{eq,s}^2 - \bar{n}_{eq}^2) \psi = 0 \quad (4)$$

that is the wave equation for the trapped TE_z modes when $\partial/\partial x=0$, \bar{n}_{eq} being the desired index of the original rectangular structure obtained by imposing the continuity conditions of the interfaces $y=g$ and $y=(w+g)$.

Likewise, to obtain the E_{pq}^y waves we must put in the Maxwell's equation $E_x=0$ and couple the $\bar{n}_{eq,s}$ relative to the TE_z modes of the component ($\partial/\partial y=0$) planar wave guides to the TM_z polarization with $\partial/\partial x=0$.

The equation (3) relative to the three different guides indefinite along the y axis of Fig. 1 was solved as in 5,10 by the method of the transformation matrix relating the two continuous field components at the interfaces $x=0$ and $x=-t$ where the diffusion process may be thought exhausted. The equation (3) splits in a system of two first-order differential equations that is integrated by employing the Gear's¹² predictor-corrector technique that allows to reach the required numerical precision for arbitrary index profile also for wide integration range with a not excessive C.P.U. computer time. The zeros of the real eigenvalue equation are found by the secant method while the minima in the lossy approach are reached by the razor technique¹³.

Results and discussion

In Fig. 2 are reported the lossy TM_z and TE_z normalized equivalent indices

$$N = \frac{n_{TM,TE}^2 - n_{es,os}^2}{(n_{es,os} + \Delta n_{e,o}) - n_{es,os}^2} \quad (5)$$

vs. k_o for the (\perp) configuration with $n_{ov}=2.10$; $b=0.4\mu\text{m}$;

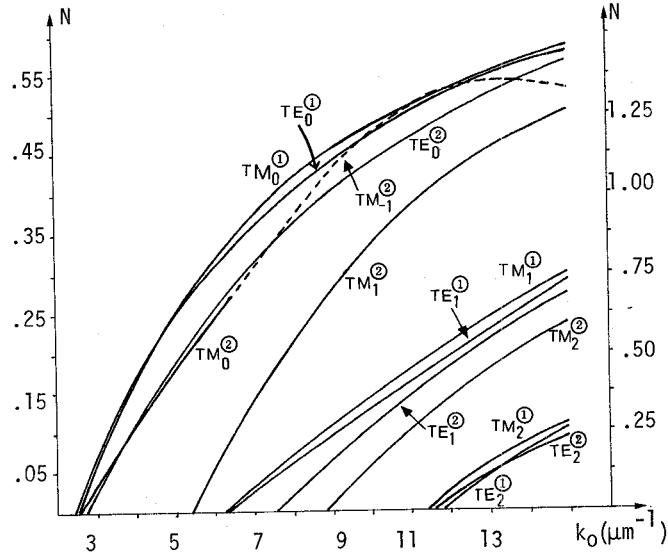


FIGURE 2: TE AND TM DISPERSION CURVES RELATIVE TO (1) AND (2) GUIDES FOR C VERTICAL.

$\epsilon_m = -16.3 - j0.522$; $h = 0.02\mu\text{m}$. The dispersion curves (1) superscript refer to the slab guide (1) without metal film and the ones with (2) to the guide (2) with silver layer. It is worth to notice that the $TE_z(\parallel)$ equivalent index values of the slab (1) with horizontal optic axis differ from the $TM_z(\perp)$ ones relative to the vertical c configuration only on the fifth significant figure. The same applies to the $TM_z(\parallel)$ and $TE_z(\perp)$. This correspondence only in part occurs in the slab with me-

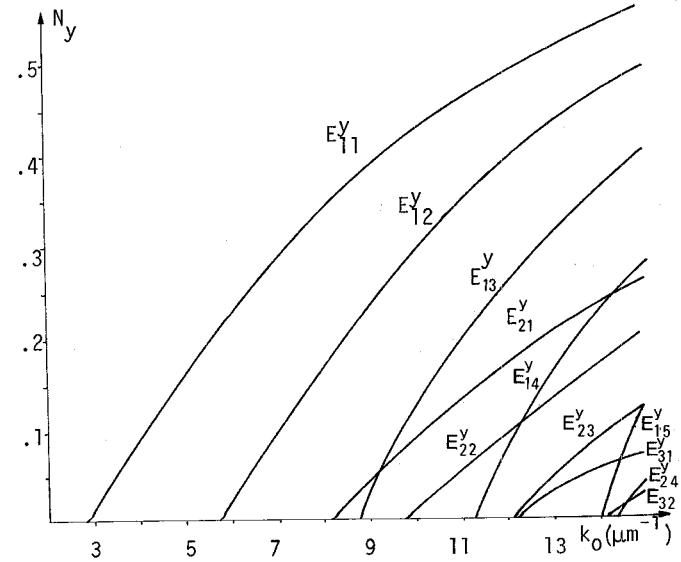


FIGURE 3: E_y^y DISPERSION CURVES FOR C HORIZONTAL CONFIGURATION. THE PARAMETERS ARE AS IN THE FIG.2.

tal layer because the differences concern the third significant figure. Moreover, the TM polarization behaviour is rather different for the two configurations since the (||) configuration does not support surface plasma waves (SPW) while for c vertical the TM_0 wave suffers a transformation in TM_1 for wavelengths less than $1\mu m$ and tilts in its upper part because of the $LiNbO_3$ intrinsic dispersion. The extinction coefficients of the TE modes are two magnitude orders lower than the TM ones and there are absorption peaks near to $1\mu m$.

In Fig. 3 are drawn the lossless E_{pq}^y indices N_y normalized by (5) to the n_{es} substrate index with the geometrical and physical parameters of Fig. 2 and $g=w=0.75\mu m$ and relative to the configuration with horizontal optic axis.

The lossy n values differ from the lossless ones only on the tenth significant figure and no changes were found on the extinction coefficients in respect to the ones calculated via the perturbation approach.

Besides we point-out the fundamental mode without metal is the TE_0 wave while the TM_0 mode is the lower order field in the slab with metal. This result leads to cutoff wavelengths almost equal for the E_{11}^x and E_{11}^y guided modes since the real part of their refractive indices little differ from the TM_0 fundamental mode of the slab without metal layer and the TE_0 wave of the slab with metal layer respectively. At last we see that the E_{pq}^x and E_{pq}^y waves are alternatively even and odd modes in respect to the plane $y=0$ that behaves as an electric or magnetic wall. In Fig. 4 are drawn the extinction coefficients of the E_{pq}^y modes. Also these curves show peak values at $\lambda_0=1\mu m$.

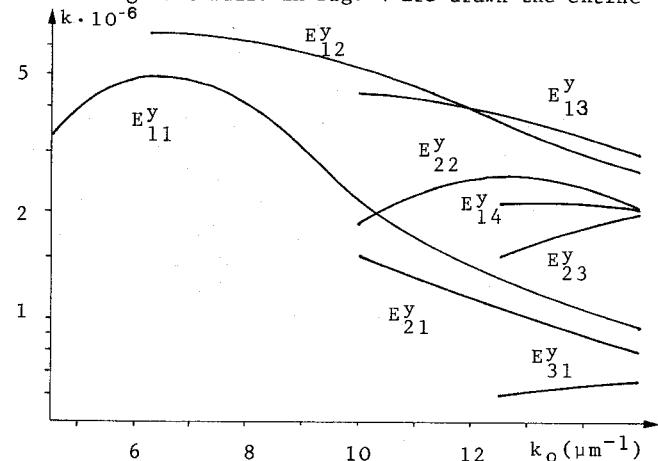


FIGURE 4: E_{pq}^y EXTINCTION COEFFICIENTS FOR C-HORIZONTAL.

tion coefficients of the E_{pq}^y modes. Also these curves show peak values at $\lambda_0=1\mu m$.

The Fig. 5 shows the lossy (\perp) indices N_x of the E_{pq}^x modes as a function of k_0 . The E_{pq}^x curves are considerably different for the two orientations of the optic axis. For the (\perp) case we find the fundamental mode E_{11}^x only for $\lambda_0 \leq 1\mu m$. For $\lambda_0=1\mu m$ we find also the E_{21}^x mode lacking in the (||) structure. Also in this case the differences between complex perturbed index values and the lossy exact ones are insignificant and the attenuations range between 1 dB/cm and the peak value of 169 dB/cm.

In this case the lossy fundamental TM_0 indices are rather different from the E_{11}^x ones. Moreover, the lossy TM_z n values for the slab ② differ on the third significant figure from the lossless ones.

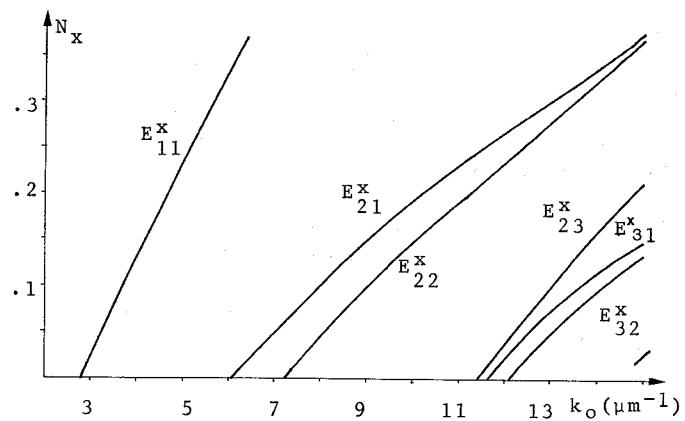


FIGURE 5: E_{pq}^x NORMALIZED INDICES vs. k_0 FOR C-VERTICAL.

References

1. M.N. Armenise, M. De Sario: "Modes in overlayed in diffused waveguides", Proc. of 6th European Microwave Conference, Sept. 1976, Roma, pp. 504-508.
2. A. Reisinger: "Characteristics of optical modes in lossy waveguide", Appl. Optics, vol. 12, n. 5, May 1973, pp. 1015-1025.
3. Y. Yamamoto et al.: "Characteristics of optical guided modes in multilayer metal-clad planar optical guide with low-index dielectric buffer layer", IEEE J. of Quant. Electronics, vol. QE-11, n. 9, Sept. 1975, pp. 729-736.
4. S.C. Rashleigh: "Four-layer metal-clad thin film optical waveguides", Optical and Quantum Electronics, vol. 8, 1976, pp. 49-60.
5. M.N. Armenise, M. De Sario: "Investigation of the guided modes in anisotropic diffused slab waveguide with embedded metal layer", Fiber and Integrated Optics, vol. 3, n. 2-3, 1980, pp. 197-219.
6. E.A.J. Marcatili: "Dielectric rectangular waveguide and directional coupler for integrated optics", Bell Syst. Tech. J., vol. 48, n. 7, Sept. 1969, pp. 2079-2102.
7. W.V. Levige et al.: "New waveguide structures for millimeter-wave and optical integrated circuits", IEEE Trans. on MTT, vol. MTT-23, Oct. 1975, pp. 788-794.
8. R.M. Knox, P.P. Toullos: "Integrated circuits for the millimeter through optical frequency range", Proc. of Symp. on Submillimeter waves, April 1970, pp. 497-516.
9. G.B. Hocker, W.K. Burns: "Mode dispersion in diffused channel waveguides by the effective index method", Applied Optics, vol. 16, n. 1, Jan. 1977, pp. 113-118.
10. M.N. Armenise, R. De Leo, M. De Sario: "Numerical analysis of propagating modes in inhomogeneous optical fibres", Alta Frequenza, vol. 44, n. 4, April 1976, pp. 230-234.
11. M.N. Armenise, M. De Sario: "Propagazione in guide ottiche a molti strati per la progettazione di modulatori elettroottici", Alta Frequenza, vol. 47, n. 3, March 1978, pp. 159-164 (in Italian).
12. C.W. Gear: "Numerical initial values problems in ordinary differential equation", Prentice Hall, 1971.
13. J.W. Bandler-P.A.M. Donald: "Optimization Microwave Networks by razor search." IEEE Trans. MTT, v.17, p.552, 1969.